Призма реферат по математике

Теперь я хочу услышать тебя! Я постаралась сжато, без воды рассказать о том, что такое призма. Что тебе понравилось?

Скачать реферат Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны и т. Однако человек не только пассивно наблюдал природу, но практически осваивал и использовал ее богатства. В процессе практической деятельности он накапливал геометрические сведения. Материальные потребности побуждали людей изготовлять орудия труда, обтесывать камни и строить жилища, лепить глиняную посуду и натягивать тетиву на лук.

Призма (геометрия)

Ребро куба равно а. Основанием прямой призмы является равнобедренный треугольник, в котором высота проведенная к основанию равняется 8см. Высота призмы равняется 12см. Найдите полною поверхность призмы если боковая грань что содержит основание треугольника - квадрат.

Решение Площадь поверхности призмы будет равна сумме площадей оснований и сумме площадей боковых поверхностей, то есть , где - площадь основания призмы, - площадь боковой поверхности, содержащей основание, - площадь боковой поверхности, содержащей стороны равнобедренного треугольника.

Они равны, так как стороны основания равны в следствие того, что треугольник равнобедренный, а вторые стороны равны высоте призмы Поскольку боковая грань, содержащая основание треугольника, является квадратом, то основание треугольника также равно 12 см.

Таким образом, зная высоту и основание равнобедренного треугольника можно найти его остальные стороны и площадь: Катеты, соответственно равны у нас высота, являющаяся в равнобедренном треугольнике одновременно и медианой , с каждым из катетов образует прямоугольный треугольник по теореме Пифагора: Таким образом: 3. В правильной четырёхугольной призме площадь основания , а высота 14 см. Найти диагональ призмы. Решение Соответственно, сторона основания будет равна Откуда диагональ основания правильной прямоугольной призмы будет равна Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник.

Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна: Ответ: 22 см 4. Рассмотрим правильную четырехугольную призму , диагональное сечение которой — квадрат. Через вершину и середины ребер АВ и ВС проведена плоскость. Сечением является пятиугольник площадь которого можно найти. Можносначала вычислить площади треугольников и а потом от площади первого треугольника вычесть удвоенную площадь второго поскольку треугольники и равны.

Однако в данном случае проще воспользоваться формулой: Проекция пятиугольника на плоскость основания призмы есть пятиугольник , площадь которого найдем, вычитая из площади квадрата площадь треугольника ВКL: Пусть диагональ ВD основания пересекает отрезок КL в точке О.

Так как и согласно теореме о трех перпендикулярах , то — линейный угол двугранного угла КL. Далее находим:.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: стереометрия ПРИЗМА 10 11 класс

Общий исторический обзор. Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел. Скачать бесплатно - реферат по теме 'Призма'. Раздел: Математика. Тут найдется полное раскрытие темы -Призма, Загружено.

Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны и т. Однако человек не только пассивно наблюдал природу, но практически осваивал и использовал ее богатства. В процессе практической деятельности он накапливал геометрические сведения. Материальные потребности побуждали людей изготовлять орудия труда, обтесывать камни и строить жилища, лепить глиняную посуду и натягивать тетиву на лук. Конечно, десятки и сотни тысяч раз натягивали люди свои луки изготовляли разные предметы с прямыми ребрами и т. Примерно то же можно сказать о других основных геометрических понятиях. Практическая деятельность человека служила основой длительного процесса выработки отвлеченных понятий, открытия простейших геометрических зависимостей и соотношений. Начало геометрии было положено в древности при решении чисто практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилось потребность обобщения, уяснения зависимости одних элементов от других, установления логических связей и доказательств. Постепенно создавалась геометрическая наука. Примерно в VI - V вв. Произведения, содержащие систематическое изложение геометрии, появились в Греции еще в V до н.

Измерение объемов 2.

Пирамида — это многогранник, одна из граней которого — произвольный n — угольник A1 A2 …An , а остальные грани — треугольники с общей вершиной. Этот n — угольник A1 A2 …An называется основанием пирамиды.

Реферат на тему «Призма 2»

Многоугольники, лежащие в параллельных плоскостях, называют основаниями призмы, а остальные грани - боковыми гранями. Поверхность призмы, таким образом, состоит из двух равных многоугольников оснований и параллелограммов боковых граней. Различают призмы треугольные, четырехугольные, пятиугольные и т. Все призмы делятся на прямые и наклонные. У прямой призмы боковые грани - прямоугольники. Перпендикуляр к плоскостям оснований, концы которого принадлежат этим плоскостям, называют высотой призмы.

Все, что нужно знать о призме для успешной сдачи ЕГЭ по математике (2020)

Ребро куба равно а. Основанием прямой призмы является равнобедренный треугольник, в котором высота проведенная к основанию равняется 8см. Высота призмы равняется 12см. Найдите полною поверхность призмы если боковая грань что содержит основание треугольника - квадрат. Решение Площадь поверхности призмы будет равна сумме площадей оснований и сумме площадей боковых поверхностей, то есть , где - площадь основания призмы, - площадь боковой поверхности, содержащей основание, - площадь боковой поверхности, содержащей стороны равнобедренного треугольника. Они равны, так как стороны основания равны в следствие того, что треугольник равнобедренный, а вторые стороны равны высоте призмы Поскольку боковая грань, содержащая основание треугольника, является квадратом, то основание треугольника также равно 12 см. Таким образом, зная высоту и основание равнобедренного треугольника можно найти его остальные стороны и площадь: Катеты, соответственно равны у нас высота, являющаяся в равнобедренном треугольнике одновременно и медианой , с каждым из катетов образует прямоугольный треугольник по теореме Пифагора: Таким образом: 3. В правильной четырёхугольной призме площадь основания , а высота 14 см.

Задача 3 Условие: Каждое ребро наклонной треугольной призмы равно 2.

.

Реферат: Призма

.

Понятие и основные свойства призмы

.

Реферат: Пирамида и призма

.

Реферат: Призма и параллелепипед

.

Призма и параллелепипед

.

Реферат на тему «Призма 2»

.

ВИДЕО ПО ТЕМЕ: 10 класс, 30 урок, Призма
Похожие публикации